Flutter instability of a fluid-conveying fluid-immersed pipe affixed to a rigid body
نویسندگان
چکیده
A set of simplified boundary conditions for a flexible beam connected to a rigid body at one end and free at the other end is presented and applied to the case of a fluidconveying, fluid-immersed pipe. These boundary conditions represent an analytically tractable approximation to those of a submersible which uses a combination of jet action and flutter instability induced tail motion to produce thrust. The boundary conditions are made non-dimensional, and the effect of the non-dimensional mass of the rigid body on system stability is assessed. The neutral stability of this system is determined within a two-parameter space consisting of the velocity of the fluid within the tail, and the forward speed of the submersible. Equations in the literature, derived using slender-body theory, were used to compute the sign of the thrust produced by the tail and the tail’s Froude efficiency for the neutrally stable waveforms of the beam. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber
When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability o...
متن کاملAnalysis of the Effect of Fluid Velocity on the Instability of Concrete Pipes Reinforced with Nanoparticles Conveying the Fluid Flow
With respect to the great application of pipes conveying fluid in civil engineering, presenting a mathematical model for their stability analysis is essential. For this purpose, a concrete pipe, reinforced by iron oxide (Fe2O3) nanoparticles, conveying fluid is considered. The goal of this study is to investigate the structural stability to show the effects of the inside fluid and the nanopart...
متن کاملNonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method
Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride (PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. The mathematical mode...
متن کاملNonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory
In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...
متن کاملStabilization of Electrostatically Actuated Micro-pipe Conveying Fluid Using Parametric Excitation
This paper investigates the parametric excitation of a micro-pipe conveying fluid suspended between two symmetric electrodes. Electrostatically actuated micro-pipes may become unstable when the exciting voltage is greater than the pull-in value. It is demonstrated that the parametric excitation of a micro-pipe by periodic (ac) voltages may have a stabilizing effect and permit an increase of the...
متن کامل